Scheduling Dependent Real-Time Activities
نویسندگان
چکیده
A real-time application is typically composed of a number of cooperating activities that must execute within specific time intervals. Since there are usually more activities to be executed than there are processors on which to execute them, several activities must share a single processor. Necessarily, satisfying the activities’ timing constraints is a prime concern in making the scheduling decisions for that processor. Unfortunately, the activities are not independent. Rather, they share data and devices, observe concurrency constraints on code execution, and send signals to one another. These interactions can be modeled as contention for shared resources that must be used by one activity at a time. An activity awaiting access to a resource currently held by another activity is said to depend on that activity, and a dependency relationship is said to exist between them. Dependency relationships may encompass both precedence constraints and resource conflicts. No algorithm solves the problem of scheduling activities with dynamic dependency relationships in a way that is suitable for all real-time systems. This thesis provides an algorithm, called DASA, that is effective for scheduling the class of real-time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling decisions demonstrate that DASA provides equivalent or superior performance to other scheduling algorithms of interest under a wide range of conditions for parameterized, synthetic workloads. DASA performs particularly well during overloads, when it is impossible to complete all of the activities. This research makes a number of contributions to the field of computer science, including: a formal model for analyzing scheduling algorithms; the DASA scheduling algorithm, which integrates resource management with standard scheduling functions; results that demonstrate the efficacy of DASA in a variety of situations; and a simulator. In addition, this work may improve the current practices employed in designing and constructing supervisory control systems by encouraging the use of modern software engineering methodologies and reducing the amount of tuning that is required to produce systems that meet their real-time constraints −− while providing improved scheduling, graceful degradation, and more freedom in modifying the system over time. Chapter
منابع مشابه
A fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملPareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملAn Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...
متن کاملModified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations
In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...
متن کاملPresenting a Multi-Objective Mathematical Model for Time-Cost trade off Problem Considering Time Value of Money and Solve it by MOPSO Algorithm
The time - cost tradeoff problem is one of the most critical issues in the project scheduling field and so far, a lot of research has been done with a variety of quantitative and qualitative approaches on this subject. In this research, we intend to provide a two - objective mathematical model which balances crash and delay for activities. So that it provides the right tools for decision makers...
متن کامل